
1

What every Java 
developer needs to 
know about serverless

Helber Belmiro

Open Source Software Engineer

Working on Kogito and CNCF Serverless Workflow



What we’ll 
discuss today

▸ What is serverless computing?

▸ Why should you care?

▸ What about Java?

▸ Evolution

▸ Tools

▸ Demo

Agenda

2



@helber_belmiro hbelmiro
3

What is serverless computing?



@helber_belmiro hbelmiro

What is serverless computing?

4

Source:

https://github.com/cncf/wg-serverless/tree/master/whitepapers/serverless-overview 

Building and running applications that do not 
require server management. A finer-grained 
deployment model where applications, bundled as 
one or more functions, are uploaded to a platform 
and then executed, scaled, and billed in response to 
the exact demand needed at the moment.

“”
Cloud Native Computing Foundation
Serverless Working Group

https://github.com/cncf/wg-serverless/tree/master/whitepapers/serverless-overview


@helber_belmiro hbelmiro
5

What is serverless computing?

Two personas

1. Developer - writes code for, and benefits from the serverless 

platform which provides them the point of view that there are no 

servers nor that their code is always running

2. Provider - deploys the serverless platform for an external or 

internal customer



@helber_belmiro hbelmiro
6

What is serverless computing?

A serverless platform may provide one or both of the following

1. Functions-as-a-Service (FaaS)

･ Typically event-driven computing

･ Functions that are triggered by events or HTTP requests

･ Executed as needed, scaling without the need to manage 

servers or any other underlying infrastructure

2. Backend-as-a-Service (BaaS)

･ Third-party API-based services

･ Replace core subsets of functionality in an application

･ Auto-scales and operates transparently



@helber_belmiro hbelmiro
7

Source:
https://www.datadoghq.com/state-of-serverless/ 

Why should I care about serverless?

June 
2022

https://www.datadoghq.com/state-of-serverless/


@helber_belmiro hbelmiro
8

Why should I care about serverless?

Benefits

Serverless reduces operational costs



@helber_belmiro hbelmiro
9

Why should I care about serverless?

Benefits

Reduces costs

● You pay for compute time as it’s needed
● Increases developer productivity

Helps enable DevOps adoption

Developers don't need to explicitly describe the 
infrastructure they need operations to provision 

for them

Enables agility

Allows to streamline app development even 
further by incorporating entire components 

from third-party BaaS offerings



@helber_belmiro hbelmiro
10

Sooner or later you'll have to face it

Why should I care about serverless?



@helber_belmiro hbelmiro
11

Source:
https://www.datadoghq.com/state-of-serverless/ 

What about Java?

June 
2022

https://www.datadoghq.com/state-of-serverless/


@helber_belmiro hbelmiro
12

Source:
https://www.datadoghq.com/state-of-serverless/ 

June 
2022

What about Java?

https://www.datadoghq.com/state-of-serverless/


@helber_belmiro hbelmiro
13

Serverless and Java in 2018

What about Java?



@helber_belmiro hbelmiro
14

Evolution

FaaS

2015

Serverless 1.0 - FaaS

▸ AWS Lambda - 2015

▸ Azure Functions - 2016

▸ IBM Cloud Functions - 2016

▸ Google Cloud Functions - 2018



@helber_belmiro hbelmiro
15

Evolution

FaaS

2015

Serverless 1.0 - FaaS



@helber_belmiro hbelmiro
16

Evolution

FaaS

2015

Serverless 1.0 - FaaS
▸ HTTP and few other sources

▸ Functions only

▸ Limited execution time (5-10 minutes)

▸ Limited local development experience

▸ Vendor lock-in



@helber_belmiro hbelmiro
17

Evolution

FaaS

2015

Serverless 1.0 - FaaS - Java
▸ Java 8 - 2014

▸ Designed for throughput

▸ Designed to be long-running

▸ High startup time

▸ Can't scale fast



@helber_belmiro hbelmiro
18

Evolution

FaaS

2015

Serverless 1.0 - FaaS - Java
▸ Java EE 7 - Abandoned by Oracle

▸ Spring Framework 4 - De facto standard

▸ Reflection-based

▸ High startup time

▸ Can't scale fast



@helber_belmiro hbelmiro
19

Evolution

FaaS

2015

Serverless 1.5 - Kubernetes

▸ Frameworks that auto-scale containers

▸ Managed services that abstract K8s APIs

▸ Knative 0.1 - Late 2018

▸ Easy to debug and test locally

▸ Poliglot

▸ Portable - No vendor lock-in

Containers, K8s, and Knative

2018



@helber_belmiro hbelmiro
20

Evolution

FaaS

2015

Serverless 1.5 - Knative

▸ Serverless on top of Kubernetes

▸ Auto-scale

▸ Scale to zero

▸ No vendor lock-in

▸ Hybrid cloud

▸ Any language

2018

Containers, K8s, and Knative



@helber_belmiro hbelmiro
21

Evolution

FaaS

2015

Serverless 1.5 - Java

▸ Java 11 - 2018 👍

▸ Better support to containers 👍

▸ High startup time 👎

▸ Can't scale fast 👎

2018

Containers, K8s, and Knative



@helber_belmiro hbelmiro
22

Evolution

FaaS

2015

Serverless 1.5 - Quarkus

2018
Quarkus

2019
Containers, K8s, and Knative



@helber_belmiro hbelmiro
23

Evolution

FaaS

2015

Serverless 1.5 - Quarkus

2018
Quarkus

2019

▸ Open source with a vibrant community

▸ Container first

▸ Kubernetes native

▸ Supersonic: Superfast startup

▸ Subatomic: Low memory usage

▸ Can scale fast

Containers, K8s, and Knative



@helber_belmiro hbelmiro
24

Quarkus

Source:
https://quarkus.io/ 

https://quarkus.io/


@helber_belmiro hbelmiro
25

Evolution

FaaS

2015

Quarkus - How to achieve that performance?

2018
Quarkus

2019

▸ Build-time processing

･ As much as possible is done at build time

･ The app only contains the classes used at runtime

▸ Reduced use of reflection

･ Reflection calls are replaced in build time with regular 

invocations

･ Dependency injection is done in build time

･ No expensive lookups when the app starts

Containers, K8s, and Knative



@helber_belmiro hbelmiro
26

Evolution

FaaS

2015

Quarkus - Developer joy

2018
Quarkus

2019

▸ Live coding - code changes are reflected automatically

▸ Dev UI - visualize/configure extensions, logs and testing components

▸ Dev services - automatic provisioning and application wiring of services

▸ Continuous testing - instant feedback on code changes

Containers, K8s, and Knative



@helber_belmiro hbelmiro
27

Evolution

FaaS

2015

Quarkus - Best libraries and standards

2018
Quarkus

2019

▸ CDI, JAX-RS, JPA, JTA, Vert.x, Camel…

▸ Implements MicroProfile

▸ Supports Spring APIs

▸ Hundreds of extensions

Containers, K8s, and Knative



@helber_belmiro hbelmiro
28

Evolution

FaaS

2015

Deploying a Quarkus app to Knative

2018
Quarkus

2019
Containers, K8s, and Knative



@helber_belmiro hbelmiro
29

Evolution

FaaS

2015

2018
Quarkus

2019
Java emerges

2020

Containers, K8s, and Knative



@helber_belmiro hbelmiro
30

Evolution

FaaS

2015

2018
Quarkus

2019
Java emerges

2020

Containers, K8s, and Knative

Serverless 2.0 - State, integration, and orchestration

▸ State handling

▸ Enterprise integration patterns

▸ Advanced messaging capabilities

▸ Orchestration



@helber_belmiro hbelmiro
31

Evolution

FaaS

2015

2018
Quarkus

2019
Java emerges

2020

Containers, K8s, and Knative

Serverless 2.0 - Orchestration

▸ AWS Step Functions

▸ Google Workflows

▸ Azure Durable Functions



@helber_belmiro hbelmiro
32

Evolution

FaaS

2015

2018
Quarkus

2019
Java emerges

2020

Containers, K8s, and Knative

Source:
https://aws.amazon.com/step-functions/use-cases/ 

https://aws.amazon.com/step-functions/use-cases/


@helber_belmiro hbelmiro
33

Evolution

FaaS

2015

2018
Quarkus

2019
Java emerges

2020

Containers, K8s, and Knative

Serverless 2.0 - Orchestration

▸ Vendor lock-in (no portability and low productivity across platforms)

▸ Limits the potential for common libs, tooling, and infrastructure

▸ What about Knative?



@helber_belmiro hbelmiro
34

Evolution

FaaS

2015

2018
Quarkus

2019
Java emerges

2020

Containers, K8s, and Knative

Serverless 2.0 - CNCF Serverless Workflow

▸ Community driven

▸ Vendor neutral

▸ Open source

▸ Focus on standards (OpenAPI, CloudEvents, gRPC, GraphQL)

▸ Multi-language support (Java, Python, Typescript, Go, .NET)



@helber_belmiro hbelmiro
35

Evolution

FaaS

2015

2018
Quarkus

2019
Java emerges

2020

Containers, K8s, and Knative

Knative 1.0

2021

Knative 1.0

▸ Serving

▸ Eventing

▸ Apache Kafka Broker

▸ RabbitMQ Broker

▸ Knative Operator



@helber_belmiro hbelmiro
36

Evolution

FaaS

2015

2018
Quarkus

2019
Java emerges

2020

Containers, K8s, and Knative

Knative 1.0 and Kogito

2021

Kogito Serverless Workflow

▸ Implements the CNCF Serverless Workflow specification

▸ Open source

▸ Built on top of Quarkus

https://github.com/kiegroup/kogito-docs/

https://github.com/kiegroup/kogito-docs/


@helber_belmiro hbelmiro
37

Evolution

FaaS

2015

2018
Quarkus

2019
Java emerges

2020

Containers, K8s, and Knative
2021

Red Hat OpenShift Serverless Logic

▸ Knative and Kogito under the hood

▸ Available as a Developer Preview in OpenShift Serverless 1.24.0

Red Hat OpenShift Serverless 
Logic and Knative Functions

2022
Knative 1.0 and Kogito



@helber_belmiro hbelmiro
38

Evolution

FaaS

2015

2018
Quarkus

2019
Java emerges

2020

Containers, K8s, and Knative
2021

Knative Functions

▸ Available in Knative 1.8

▸ FaaS in Knative

▸ Uses Funqy

OpenShift Serverless Logic and 
Knative Functions

2022
Knative 1.0 and Kogito



@helber_belmiro hbelmiro
39

Evolution

FaaS

2015

2018
Quarkus

2019
Java emerges

2020

Containers, K8s, and Knative
2021

Knative Functions

OpenShift Serverless Logic and 
Knative Functions

2022
Knative 1.0 and Kogito



@helber_belmiro hbelmiro
40

Demo



@helber_belmiro hbelmiro
41

Demo



@helber_belmiro hbelmiro
42

Takeaways

Takeaways
▸ FaaS and BaaS

▸ You can use the cloud providers' APIs

▸ You can take a portable approach with Knative and CNCF Serverless Workflow

▸ Scale to zero

▸ Apps need to start and scale fast

▸ Usually short living apps

▸ Java is great for serverless



thegreatapi.com

linkedin.com/in/hbelmiro

github.com/hbelmiro

twitter.com/helber_belmiro

Questions?

$ w
hoam

i

43

Let's stay in touch:


