

What every Java developer needs to know about serverless

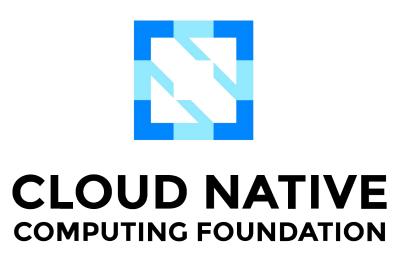
Helber Belmiro

Open Source Software Engineer

Working mainly on Kogito Serverless Workflow and Quarkus OpenAPI Generator

What we'll discuss today

- What is serverless computing?
- Why should you care?
- What about Java?
- Evolution
- Tools
- Demo



Building and running applications that **do not** require server management. A finer-grained deployment model where applications, bundled as one or more functions, are uploaded to a platform and then executed, scaled, and billed in response to the exact demand needed at the moment.

Cloud Native Computing Foundation

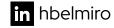
Serverless Working Group



Two personas

 Developer - writes code for, and benefits from the serverless platform which provides them the point of view that there are no servers nor that their code is always running

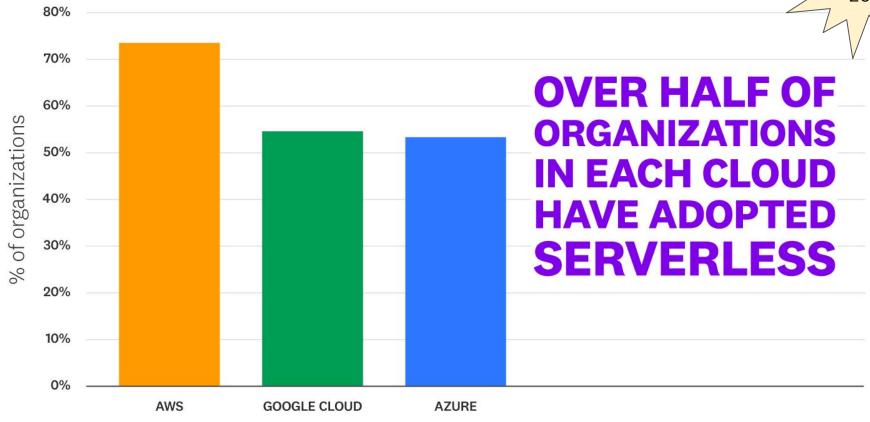
2. **Provider** - deploys the serverless platform for an external or internal customer


A serverless platform may provide one or both of the following

Functions-as-a-Service (FaaS)

- Typically event-driven computing
- Functions that are triggered by events or HTTP requests
- Executed as needed, scaling without the need to manage servers or any other underlying infrastructure

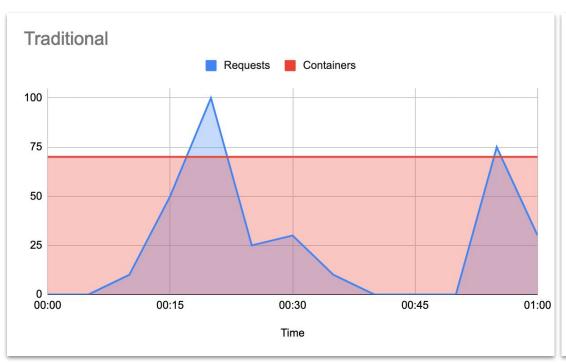
2. Backend-as-a-Service (BaaS)

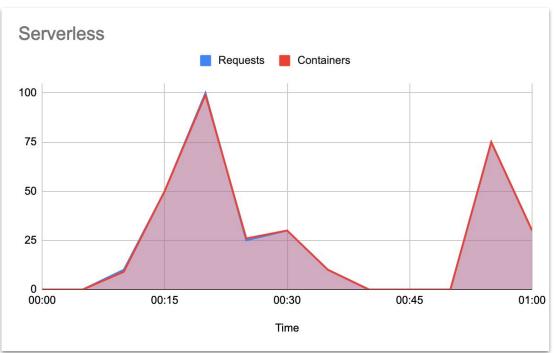

- Third-party API-based services
- Replace core subsets of functionality in an application
- Auto-scales and operates transparently


Serverless adoption by cloud provider

Cloud Provider

Source: Datadog

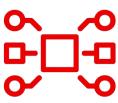




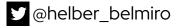
Benefits

Serverless reduces operational costs

Benefits



- You pay for compute time as it's needed
- Increases developer productivity


Helps enable DevOps adoption

Developers don't need to explicitly describe the infrastructure they need operations to provision for them

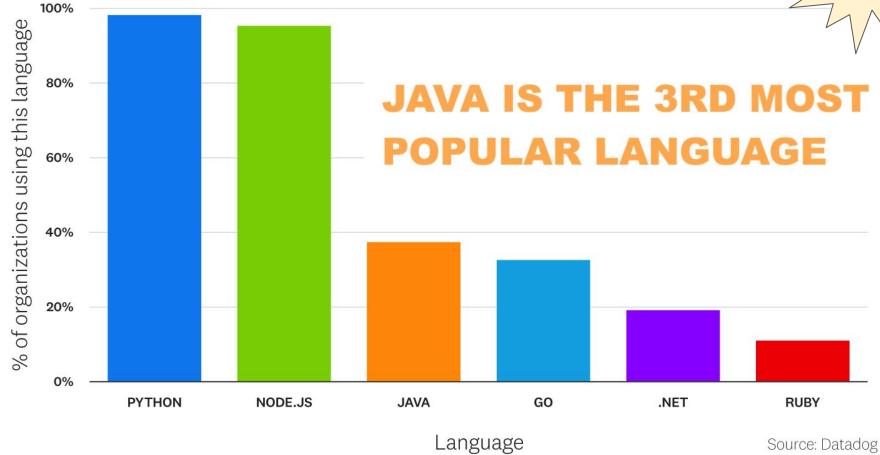
Enables agility

Allows to streamline app development even further by incorporating entire components from third-party BaaS offerings

Sooner or later you'll have to face it

Percent of large organizations running Lambda functions in one or more languages

Total number of languages in which Lambda is deployed


Source: Datadog

Top languages used in Lambda functions

Serverless and Java in 2018

Serverless with Java

Serverless with Python and Node.js

Serverless 1.0 - FaaS

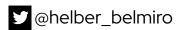
- AWS Lambda 2015
- Azure Functions 2016
- ► IBM Cloud Functions 2016
- Google Cloud Functions 2018

Serverless 1.0 - FaaS

```
1 import com.amazonaws.services.lambda.runtime.Context;
 2 import com.amazonaws.services.lambda.runtime.RequestHandler;
 3 import com.amazonaws.services.lambda.runtime.LambdaLogger;
 5 public class HandlerInteger implements RequestHandler<Integer, Integer> {
    @Override
    public Integer handleRequest(Integer event, Context context) {
      LambdaLogger logger = context.getLogger();
10
11
      // process event
12
      logger.log("EVENT: " + event);
13
      logger.log("EVENT TYPE: " + event.getClass());
14
15
      // return amount of time remaining before timeout
16
      return context.getRemainingTimeInMillis();
17
18 }
```


Serverless 1.0 - FaaS

- HTTP and few other sources
- Functions only
- Limited execution time (5-10 minutes)
- Limited local development experience
- Vendor lock-in



Serverless 1.0 - FaaS - Java

- Java 8 2014
- Designed for throughput
- Designed to be long-running
- High startup time
- Can't scale fast



Serverless 1.0 - FaaS - Java

- Java EE 7 Not receiving updates
- Spring Framework 4 De facto standard
- Reflection-based
- High startup time
- Can't scale fast

Serverless 1.5 - Kubernetes

- Frameworks that auto-scale containers
- Managed services that abstract K8s APIs
- Knative 0.1 Late 2018
- Easy to debug and test locally
- Poliglot
- Portable No vendor lock-in

Serverless 1.5 - Knative

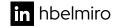
- Serverless on top of Kubernetes
- Auto-scale
- Scale to zero
- No vendor lock-in
- Hybrid cloud
- Any language

Serverless 1.5 - Java

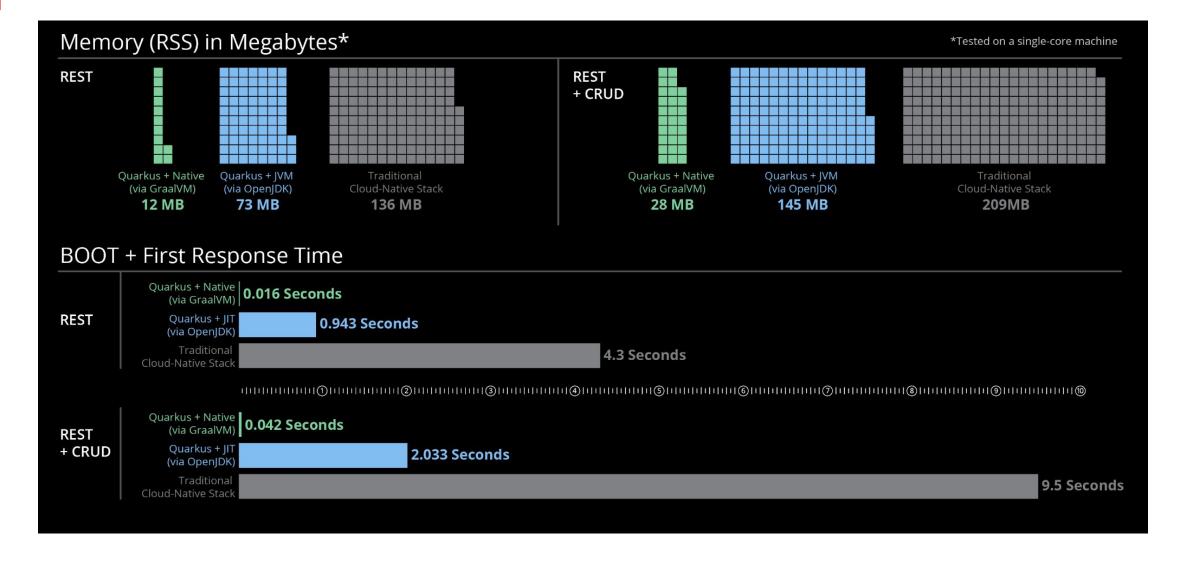
- Java 11 2018
- Better support to containers <u>-</u>
- High startup time \(\bigsip \)
- Can't scale fast \(\bigg\)?

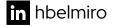
Traditional apps

Serverless 1.5 - Quarkus

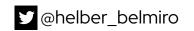


Serverless 1.5 - Quarkus


- Open source with a vibrant community
- Container first
- Kubernetes native
- Supersonic: Superfast startup
- Subatomic: Low memory usage
- Can scale fast







Quarkus - How to achieve that performance?

- Build-time processing
 - As much as possible is done at build time
 - · The app contains only the classes that are used at runtime
- Reduced use of reflection
 - Reflection calls are replaced in build time with regular invocations
 - Dependency injection is done in build time
 - No expensive lookups when the app starts

Quarkus - Developer joy

- Live coding code changes are reflected automatically
- Dev UI visualize/configure extensions, logs and testing components
- Dev services automatic provisioning and application wiring of services
- Continuous testing instant feedback on code changes

Quarkus - Best libraries and standards

- CDI, JAX-RS, JPA, JTA, Vert.x, Camel...
- Implements MicroProfile
- Supports Spring APIs
- Hundreds of extensions

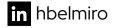


Deploying a Quarkus app to Knative

```
$ mvn package \
    -Dquarkus.kubernetes.deploy=true \
    -Dquarkus.kubernetes.deployment-target=knative \
    -Dquarkus.container-image.group=dev.local/hbelmiro
```


Serverless 2.0 - State, integration, and orchestration

- State handling
- Enterprise integration patterns
- Advanced messaging capabilities
- Orchestration

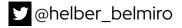


Serverless 2.0 - Orchestration

- AWS Step Functions
- Google Workflows
- Azure Durable Functions

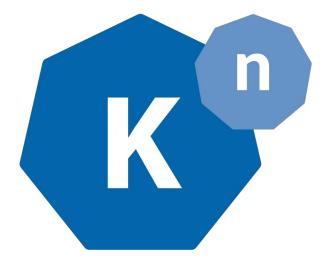
Serverless 2.0 - Orchestration

- Vendor lock-in (no portability and low productivity across platforms)
- Limits the potential for common libs, tooling, and infrastructure
- What about Knative?



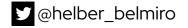
Serverless 2.0 - CNCF Serverless Workflow

- Community driven
- Vendor neutral
- Open source
- Focus on standards (OpenAPI, CloudEvents, gRPC, GraphQL)
- Multi-language support (Java, Python, Typescript, Go, .NET)



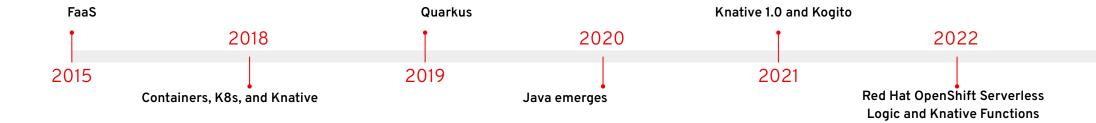
Knative 1.0

- Serving
- Eventing
- Apache Kafka Broker
- RabbitMQ Broker
- Knative Operator

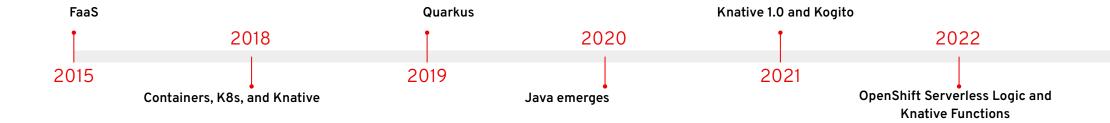


Kogito Serverless Workflow

- Implements the CNCF Serverless Workflow specification
- Open source
- Built on top of Quarkus

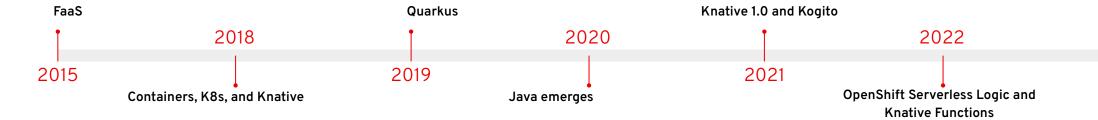


https://github.com/kiegroup/kogito-docs/



Red Hat OpenShift Serverless Logic

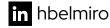
- Knative and Kogito Serverless Workflow under the hood
- Available as a Developer Preview in OpenShift Serverless 1.24.0
- ► GA planned for 2023



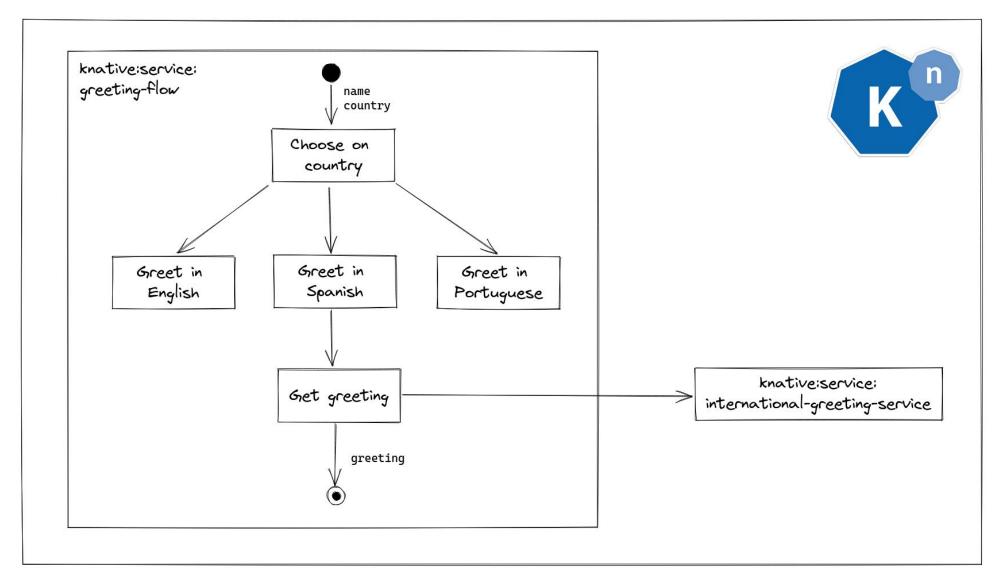
Knative Functions

- Available in Knative 1.8
- FaaS in Knative
- Uses Funqy

Knative Functions


```
import io.quarkus.funqy.Funq;

public class Function {
    /**
    * This function simply echoes its input
    * @param input a Java bean
    * @return a Java bean
    */
    @Funq
    public Output function(Input input) {
        // Add business logic here
        return new Output(input.getMessage());
    }
}
```



Demo

Takeaways

- FaaS and BaaS
- You can use the cloud providers' APIs
- You can take a portable approach with Knative and CNCF Serverless Workflow
- Scale to zero
- Apps need to start and scale fast
- Usually short living apps
- Java is great for serverless

Questions?

Let's stay in touch:

- thegreatapi.com
- in linkedin.com/in/hbelmiro

- github.com/hbelmiro
- twitter.com/helber_belmiro

